
Analyzing of secure authorization technique
of Webservice using Authorization tool :

OAuth 2.0
SAHIL1, AKASH SHARMA2

1 UG Scholar, Chandigarh College of Engineering and Technology, Chandigarh
2UG Scholar, Chandigarh College of Engineering and Technology, Chandigarh

ABSTRACT
A website or application can access resources maintained by other web apps on behalf of a user thanks to the OAuth 2.0
standard. Open Authorization 2.0 is referred to as OAuth 2.0. The most well-known and secure authorization technique
currently in use. This article focus on the work through all the difficulties experienced when building an oauth2.0
system, and explain and comprehend the complicated workings of each phase. For an completely secure system, discuss
the various exploitation techniques and its key features.

KEYWORDS OAuth 2.0; Authorization; HTTP request

I. INTRODUCTION
It is a popular authorization technique that many online apps
employ. It may sound complicated, but it allows a first-
party website to access a restricted and chosen quantity of
user data through a second-party website without divulging
its password to the first-party website. It can be used for
IoT and its uses in security surveillance [1]. However, let’s
move on to an example. Assume a person wants to register
on the website (http://www.1stparty.com), which requires
them to enter some basic information like their first and last
names, email addresses, and so on [2][3]. But instead of
doing all that work, this first-party website can retrieve the
user’s information that they have previously given to websites
like Facebook and Google. The primary and most crucial
step in all of these procedures is for this first-party website
to receives access to only fundamental knowledge not any
sensitive data, such as passwords and other

During the Process there Are Number of Interactions Be-
tween three different points named

a. Client application: -The website which wants the user
data

b. OAuth 2.0 service provider: - The website which ac-
cess to the data of users

c. Resource owner [4]: -The user whose data is data is
going to be shared. With his/her permission it would
never be possible

OAuth can now be applied in a variety of ways (via
different grant types). However, "authorization codes" and
"implicit" grant types are the only two methods we typically
employ. Although there are some differences, most of the

FIGURE 1: Roles and Actors in OAuth 2.O

stages in these grant kinds are the same [5].

II. PREVIOUS WORK
In order to encourage the reuse of user identities for vari-
ous, unique services without the necessity for password ex-
changes, OAuth was first introduced in December 2006. AOL
launched the OpenAuth framework in April 2007, which was
then adopted by Google’s OpenAuth group and updated in
October 2012 to address newly discovered security flaws.
It takes into account a client-server authentication approach
in which the client asks the server for access to limited
resources after logging in with her credentials on the client

VOLUME 2, 2022 13

Sahil et al./ Cyber Security Insights Magazine, Vol 02, 2022

side. The OAuth framework makes use of an authorization
server to distribute securitytokens to various users that ask to
access resources that are protected. Specific OAuth features
were extracted and analysed using exploratory data analytics
(EDA) techniques so that each output class could be assessed
to determine the impact of the identified OAuth features.

OAuth 2.0 is also used to offer authentication when users
log themselves into a web service using their identity han-
dled by a third-party service. This is known as a single
sign on (SSO) framework, in which the user needs to au-
thorise websites to act on her behalf. Mobile applications
frequently employ the authentication process to connect to
the application server’s back end. The resource owner (also
known as the relying party), who is the end user or a host
acting on her behalf and has the ability to request access
to protected resources, is represented by the client, which
is the application used by the user when requesting access
to the protected data or service. We investigate the bit-
level parallelism’s side-channel security in the GPU-based
bitsliced AES implementation. To locate special leakage, a
non-profiled leakage detection approach is used. The side-
channel security of the implementation is examined using
patterns on multiple bits, followed by the multi-bits feature-
level fusion attack (MBFFA) and multi-bits decision-level
fusion attack (MBDFA).

The resource owner is also represented by the authoriza-
tion server, which is the issuer of access tokens and the one
that ensures the authenticity of the owner. The Resource
Owner (RO) is the principal actor who grants access to
the IdP resources from the client, and the Resource Server
and Authorization Server are typically the same host and
are also known as identity provider (IdP) servers.Any client
application must register with the identity provider in order
to communicate with them, and during the authentication
process, credentials (a public client ID and a client secret) are
generated. shows a high-level schematic of the authentication
schema, which can be summed up as follows:

1. The client asks for access to the resource owner’s data.
2. In response, the resource owner sends the authentication

grant. The reply includes the selected grant type, the
preferred authentication server to use, and which server
hosts the resources, among other things.

3. The client requests an access token from the authenti-
cation server by sending the authentication grant to the
server.

4. After the permission has been verified, the authentica-
tion server sends back an access token that identifies the
resource owner and notifies the user that the authoriza-
tion has been granted.

5. The client submits the access token to the server hosting
the data and requests permission to access the protected
resources.

6. After validating the token and returning the requested
data, the resource server receives it.

FIGURE 2: Control Flow of OAuth 2.O

III. DIFFERENT GRANT TYPES
Let’s first look at the different grant categories. The grant
type can be compared to the OAuth Blueprint. It controls
when and how the OAuth procedure will proceed, which is
why it is also known as "OAuth flows." Let’s examine various
grant types right now.

I. Authorization code grant type: -
a. Authorization request: The client application first

asks the OAuth server for data related to a specific
user [6]. The HTTP request for the next action is
formatted as follows:

b. User Login and consent: - The user will see a
window in their browser asking them to confirm
their intention to log in to the website using
OAuth when the authorization server sends the
first request...

c. Authorization code grant: - The browser will au-
tomatically reroute to the authorization request’s
redirect uri as soon as the user grants permission.
And the authorisation code will be included in the
ensuing get request.

d. Access token request: - The client application will
exchange the authorization code it has received
for an access token via the OAuth server’s /token
endpoint. The OAuth Service will check the ac-
cess token request to see if it is legitimate. The
access code will then be sent to the client server.

e. API call: Now that it has access to the access
token, the client application can now access it.
To obtain the user information, submit to the
/userinfoend point.

f. Resource Grant: The user information end point
will verify and confirm that the token is authentic
and not the product of a hacker when it receives
it. As a result, the OAuth server will send the
necessary data.

14 VOLUME 2, 2022

Sahil et al./ Cyber Security Insights Magazine, Vol 02, 2022

II Implicit grant type: - This grant type is essen-
tially identical to "authorization code," but when
the user approves the OAuth prompt, the access
token is immediately granted to the client server,
unlike "authorization code," where access code is
granted before authorization code [7].

IV. EXPLOITING OAUTH 2.0
Now as we have learned about the basic concepts of
OAuth. Let’s finally see about exploitation techniques
[8]:

a) Open redirect: An attacker may be able to steal
the authorization tokens linked to other users’
accounts if the OAuth provider does not correctly
verify redirect uri. The code or access tokens may
be forwarded to the website controlled by the
attacker and then utilised to complete the flow
[9]. To counteract this attack, client applications
typically include a whitelist of their true call back
URIs when registering with the OAuth service.
However, there are still a variety of ways to go
around this validation.

b) Flawed scope validation: A list of the data that
the client application wishes to access is dis-
played to the user each time they log in to the
authorization server (Like Email, profile picture).
The user’s information is requested and sent us-
ing secure server-to- server communication when
using the authorisation code grant type. which the
attacker finds nearly impossible to control. At-
tackers may nonetheless register their own client
software with the OAuth service. The access to-
ken is transmitted through the browser for the
implicit grant type. Additionally, an attacker can
issue a regular browser-based request to an oAuth
API while manually adding a new scope parame-

ter in order to steal the tokens and utilise them.
c) Improper implementation of the implicit grant

type [10]: Due to the risks associated with pro-
viding access tokens through the browser, the
implicit grant type is often recommended for
single-page web applications. However, due to
its relative simplicity, it is also commonly used
in traditional client and server web applications.
During this process, the OAuth service sends
a URL fragment containing an access token to
the client application. The client application then
uses JavaScript to access the token. The problem
is that the application must store the current user
data (usually the user ID and access token) some-
where in order to maintain the session when the
user leaves the page. To solve this problem, client
applications often send this data via POST to the
server. This behavior can lead to serious vulnera-
bilities. In this case, an attacker can impersonate
any user by changing the request parameters sent
to the server. If you make a request after receiving
the session cookie, you are effectively logged in.
This request resembles a form submission request
that might be made in the context of a typical
password-based login. However, in this case the
server is implicitly trusted as there is no secret
or password corresponding to the data provided.
An attacker can access this her POST request
through a browser in an implicit flow. Against this
background, if the client her application does not
fully validate that the access token matches the
other information in the token,

V. STRENGTHENING AND SECURING THE
WHOLE PROCESS
OAuth2, a well-liked authorization framework that
enables apps to safeguard resources from unwanted
access, is frequently paired with OpenID-Connect
(OIDC). It transfers control of user authentication to an
authorization service, which then gives the user’s con-
sent for other apps to access the restricted resources.
Web and mobile applications can use OAuth2’s autho-
rization flows.
The authorization code grant flow, which is used to pro-
vide confidential clients access to protected resources,
is the most often used OAuth2 flow. Clients identify
themselves to the authorization service using a client
id, and they authenticate themselves using a client
secret.

A. OAUTH2 AUTHORIZATION CODE GRANT FLOW
The frontend and backend flows of the authorization
code grant are well separated. A user agent, often the
system browser, is given control of the frontend flow.
It checks the user’s credentials and requests autho-
rization permissions from them so that the client can

VOLUME 2, 2022 15

Sahil et al./ Cyber Security Insights Magazine, Vol 02, 2022

access protected resources. When successful, the client
receives an authorization code. In the backend flow,
the client trades the authorization code for access and
refresh tokens after being verified using a client secret.
In order to access secured backend resources on behalf
of the user, the client uses an access token.

B. MOBILE OAUTH2 CODE GRANT
The client secret is only revealed to the authorization
server during the code grant sequence. It is never made
available through the frontend user agent, which can be
less secure.
A confidential client in OAuth2 is one that has the
ability to securely guard client secrets. Unfortunately,
native apps are not seen as private clients but rather
as public ones. They cannot safeguard static secrets.
Secrets are more challenging to steal, but not im-
possible, thanks to obfuscation and code hardening
approaches. Anyone could complete an authorization
code exchange if the client secret could be stolen.
Many identification and authorization service providers
simply drop the client secret because a public client
secret is no client secret at all. AppAuth, a well-known
open source OAuth2 SDK, advises against using client
secrets especially for Android and iOS during using the
cloud services [11].

C. MAKING USE OF CLIENT SECRETS
(DANGEROUS)
When possible, we highly advise against utilising static
client secrets in native applications. Dynamic client
registration-derived client secrets are secure to employ,
but static client secrets can be easily collected from
your apps and give third parties access to your app’s
user data. If the OAuth2 service you are integrating
with has to employ client secrets, we strongly advise
carrying out the code exchange step on your backend
so that the client secret can be kept secret.
Public clients are vulnerable to a variety of threats, in-
cluding as client impersonation by malicious software
and theft of authorisation codes and tokens. To restore
the integrity of the OAuth2 code, either with a weak
secret or none at all. Grant flow must increase from
public to confidential client strength for native mobile
app protection.

D. PROOF KEY FOR CODE EXCHANGE (PKCE)
Anyone who can see a frontend authorization code on
a public client utilising the basic code grant flow can
attempt to convert it into access and refresh tokens.
To counteract this flaw, Proof Key for Code Exchange
(PKCE) was incorporated into the fundamental flow.
It tries to guarantee that the client who requests the
frontend code exchange is the same client who requests
the backend code exchange later.
The code verifier runtime secret is initially created by

the client. The client hashes this secret and transmits
this code challenge value as part of the frontend request
in the stringer form of PKCE. This value is retained
by the authorisation server. The client incorporates
the code verifier into its ensuing backend code, client
secret or not. Request for exchange. The code verifier’s
hash is compared to the code challenge it originally got
via the authorization server. The service will handle
the code exchange request as usual if they match.
A malicious actor that steals the authorization code
cannot swap the codes effectively with PKCE unless
they are aware of the original code verifier. The runtime
generated secret for the code verifier. The code verifier
can be deemed private on the mobile client because it
is transient and does not need to be stored on the client.
It would be necessary to create a fake code verifier and
insert the accompanying false code challenge hash into
the client’s initial frontend request in order to attack
PKCE. The malicious actor can then submit its false
code verifier to complete the exchange after examining
the returning authorisation code.
These attacks can be avoided using methods like
SSL/TLS and certificate pinning, but they do not stop
repackaged apps from imitating the original app and its
functionality.

VI. CONCLUSION:
This article discussed oAuth2.0, including what steps
must be taken to create a system of this kind, how
to set up grant types, and how tokens are transferred
between servers. We talked about a few well-known
vulnerabilities and how they can be used to undermine
authentication. Finally, we can say that OAuth2.0 is
a well-designed authorization mechanism, but if it is
utilised carelessly or indiscriminately, it may lead to
major security and data breach concerns.

REFERENCES
[1] Soumya Sharma, Sunil K. Singh (2022), IoT and its uses in

Security surveillance, Insights2Techinfo, pp.1
[2] Argyriou, Marios&Dragoni, Nicola &Spognardi, Angelo. (2017).

Security Flows in OAuth 2.0 Framework: A Case Study. 396-406.
DOI: 10.1007/978-3-319-66284-8_33.

[3] Sucasas, V., Mantas, G., Radwan, A., & Rodriguez, J. (2016,
May). An OAuth2-based protocol with strong user privacy preser-
vation for smart city mobile e-Health apps. In 2016 IEEE Interna-
tional Conference on Communications (ICC) (pp. 1-6). IEEE.

[4] C Diwan, Sunil K Singh. An approach to revamp the data se-
curity using cryptographic techniques. International Journal of
Advanced Research in Computer Science. Jul/Aug2017, Vol. 8
Issue 7, p476-479. 4p.

[5] Siddharth Gupta, Sunil Kumar Singh. Authenticating and Secur-
ing Mobile Applications Using Microlog. International Confer-
ence on Computer Science and Information Technology pp(258-
267).

[6] Sunil Kr Singh, Rajni Jindal. Performance Enhancement of TCP
over an Mobile Ad- Hoc National Conference on Energy, Com-
munication and Computer (NC ECC 06),MAIT, New Delhi, India
pp(242-251).

[7] Ferry, Eugene & O’Raw, John & Curran, Kevin. (2015). Security
evaluation of the OAuth 2.0 framework. Information and Com-
puter Security. 23. 73-101. DOI: 10.1108/ICS-12-2013-0089.

16 VOLUME 2, 2022

Sahil et al./ Cyber Security Insights Magazine, Vol 02, 2022

[8] Chatterjee, Ayan, et al. "SFTSDH: Applying Spring Security
Framework With TSD- Based OAuth2 to Protect Microservice
Architecture APIs." IEEE Access 10 (2022): 41914- 41934.

[9] Yang, Ronghai, Wing Cheong Lau, and Tianyu Liu. "Signing into
one billion mobile app accounts effortlessly with oauth2. 0." Black
Hat Europe (2016).

[10] Ferretti, Luca, Mirco Marchetti, and Michele Colajanni. "Verifi-
able delegated authorization for user-centric architectures and an
OAuth2 implementation." 2017 IEEE 41st Annual Computer Soft-
ware and Applications Conference (COMPSAC). Vol. 2. IEEE,
2017.

[11] Peñalvo, F. J., Sharma, A., Chhabra, A., Singh, S. K., Kumar, S.,
Arya, V., & Gaurav, A. (2022). Mobile Cloud Computing and Sus-
tainable Development: Opportunities, Challenges, and Future Di-
rections. International Journal of Cloud Applications and Comput-
ing (IJCAC), 12(1), 1-20. http://doi.org/10.4018/IJCAC.312583

VOLUME 2, 2022 17

