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ABSTRACT The practice of doing exploratory analyses on large data sets is commonplace in several scientific
disciplines. It is dependent on sophisticated data processing pipelines and computational models, which are often
developed via interdisciplinary collaboration by scientists familiar with a wide range of programming languages,
databases, and computing platforms. The tremendous complexity of both the data and the implemented analysis
procedures, as well as the continual reuse and adaption of data analysis pipelines in multiple application scenarios,
create significant ambiguity regarding the veracity of analysis outputs. In this article, we analyze the development in the
field of exploratory data analysis with the help of the Scopus database.
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I. INTRODUCTION

Data science is now ubiquitous and has an effect on almost
every industry. Data is now essential to every field and busi-
ness. Therefore, enterprises may now draw power from data
science. Data science is an interdisciplinary subject that uses
methods from other fields to gather data, analyze it, get new
insights from it, and apply those insights to decision-making.
Data science is a broad study that incorporates several areas
of computer science, such as data mining, statistics, machine
learning, data analytics, and programming languages like
Python and R. Data science end-to-end solutions are built
using a systematic approach that spans the whole process,
from defining the issue and gathering relevant data through
testing and releasing the final product. Performing analysis of
the data is known as exploratory data analysis (EDA), a step
that happens at the beginning of the data science life cycle.
After using EDA methods, individuals are more attuned to
the source data and more aware of any abnormalities or
discrepancies [1], [2]. It might be time-consuming and ar-
duous to manually evaluate the data and apply all of the EDA
approaches. In this context, we analyze the development in
the field of EDA.

Il. LITERATURE SURVEY

Author in [3] proposed a DDoS Attacks [4] and Defense
Mechanisms in Various Web-Enabled Computing Platforms:
Issues, Challenges, and Future Research Directions. Author
in [5] proposed a secure and energy efficient-based E-health
care framework for green internet of things. Author in [6]
proposed a novel coverless information hiding method based
on the average pixel value of the sub-images. Author in [7]
proposed a secure Machine Learning scenario from Big Data
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in Cloud Computing via Internet of Things network. Author
in [8] proposed a context Aware Recommender Systems.
Author in [9] proposed a cross-lingual transfer method and
distributed MinlE algorithm on apache spark. Author in
[10] proposed a smart defense against distributed Denial of
service attack in IoT networks using supervised learning clas-
sifiers. Author in [11] proposed an adaptive Feature Selection
and Construction for Day-Ahead Load Forecasting using
Deep Learning Method. Author in [12] proposed and analysis
of artificial intelligence-based technologies and approaches
on sustainable entrepreneurship. Author in [13] proposed
a digital Watermarking-Based Cryptosystem for Cloud Re-
source Provisioning. Author in [14] presents a Browser-Side
Context-Aware Sanitization of Suspicious HTMLS Code for
Halting the DOM-Based XSS Vulnerabilities in Cloud. Au-
thor in [15] proposed a lightweight mutual authentication
protocol based on elliptic curve cryptography for IoT de-
vices. Author in [16] proposed a secure Timestamp-Based
Mutual Authentication Protocol for IoT Devices Using RFID
Tags. Author in [17] proposed a novel framework for risk
assessment and resilience of critical infrastructure towards
climate change. Author in [18] presets a review on advances
in security and privacy of multimedia big data in mobile
and cloud computing. Author in [19] proposed myocardial
infarction detection based on deep neural network on imbal-
anced data. Author in [20] proposed a reputation score policy
and Bayesian game theory based incentivized mechanism for
DDoS attacks mitigation and cyber defense.

lll. RESEARCH METHODOLOGY
In this article, we analyze the development in the field of
Exploratory Data Analysis. We search the Scopus database
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using the following query:

TITLE-ABS-KEY ( "Exploratory Data Analysis" ) AND (
LIMIT-TO ( SUBJAREA , "COMP" ) )

The above-defined query extracts all the articles that have
“Exploratory Data Analysis" in their title, abstract, or key-
words.

IV. RESULT AND DISCUSSION

In this research, we analyze the work in the field of ex-
ploratory data analysis. As explained in the previous section,
we used the Scopus database to conduct our research. After
running the query, we get 1912 documents as represented in
Figure 1. Figure 2 presents the number of papers published
over the time-span related to exploratory data analysis. From
Figure 2 it is clear that the average growth rate of papers over
that year is 5.37%, this shows that exploratory data analysis
is a relevant topic and needs further research. The collected
documents are published at different platforms as represented
in Figure 3. however, it is clear that the majority of the
articles are published in international conferences (53.5%).
In addition to that, from Figure 4 it is clear that the majority
of computer science researchers are working in the field of
exploratory data analysis. In the next subsections, we analyze
the Scopus database with different parameters.

Authors 5137
Author's Keywords 4326
review | 26
note |1
erratum |1
editorial |4
conference review |48
conference paper ] 1005
book chapter | 46
book (8
article ] 773
References
Average citations per year per doc | 2.024
Average citations per documents | 24.83
Average years from publication | 8.5
Documents [l 1912

Parameter

5035

Sources (Journals, Books, etc) | 879
T T T T T T
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FIGURE 1: General Information
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FIGURE 4: Different Domain Information

A. ANALYSIS OF AUTHORS
In this subsection, we analyze the author distribution. We
arrange the authors according to the number of published
papers. This arrangement is represented as follows:

- NA NA (50)

- LANGE O (11)

- WUY (10)

— ANDRIENKO N (9)

- COOK D (9)

- FYFEC (9)

— SHNEIDERMAN B (9)

— ANDRIENKO G (8)

— KASKIS (8)

- TAKAMAY (8)

- WISMULLER A (8)

This subsection helps us to find the leading researcher in
the field of exploratory data analysis. This will help young
researchers to find relevant articles on exploratory data anal-
ysis.

B. ANALYSIS OF DOCUMENT DISTRIBUTION

In this subsection, we detail the publications’ dissemina-
tion in the scientific community. Our study included 1912
works from Scopus-indexed periodicals, conferences, re-
views, books, and book chapters. The most-cited publica-
tions in the subject of exploratory data analysis provide an
overview of the many issues and significant ideas put out
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TABLE 1: Highly Cited Papers

Paper DOI Total Cita-
tions
JAIN AK, 1999, ACM COMPUT SURV [21] 10.1145/331499.331504 9889
LE S, 2008, J STAT SOFTWARE [22] 10.18637/js5.v025.i01 4862
VESANTO J, 2000, IEEE TRANS NEURAL NETWORKS [23] 10.1109/72.846731 1896
BADDELEY A, 2005, J STAT SOFTWARE [24] 10.18637/js5.v012.i106 1636
FRIEDMAN JH, 1974, IEEE TRANS COMPUT [25] 10.1109/T-C.1974.224051 1179
KOHONEN T, 2000, IEEE TRANS NEURAL NETWORKS [26] 10.1109/72.846729 700
ZHANG T, 1997, DATA MIN KNOWL DISCOV [27] 10.1023/A:1009783824328 565
VIEGAS FB, 2004, CONF HUM FACT COMPUT SYST PROC [28] 10.1145/985692.985765 557
MAO J, 1995, IEEE TRANS NEURAL NETWORKS [29] 10.1109/72.363467 524
ANDRIENKO N, 2006, EXPLORATORY ANAL OF SPAT AND TEM- | 10.1007/3-540-31190-4 454
PORAL DATA: A SYST APPROACH [30]
RAOR, 1994, CONF HUM FACT COMPUT SYST PROC [31] NA 441
RISSO D, 2011, BMC BIOINFORM [32] 10.1186/1471-2105-12-480 436
HECKERMAN D, 2001, ] MACH LEARN RES [33] NA 388
RAUBER A, 2002, IEEE TRANS NEURAL NETWORKS [34] 10.1109/TNN.2002.804221 375
HAMED MM, 2004, ENVIRON MODEL SOFTW [35] 10.1016/j.envsoft.2003.10.005 347
GE SX, 2018, BMC BIOINFORM [36] 10.1186/512859-018-2486-6 345
BRECHMANN EC, 2013, J STAT SOFTWARE [37] 10.18637/js5.v052.103 295
GONEN M, 2012, BIOINFORMATICS [38] 10.1093/bioinformatics/bts360 291
ANDRIENKO GL, 1999, INT J GEOGR INF SCI [39] 10.1080/136588199241247 268
HENDERSON K, 2012, PROC ACM SIGKDD INT CONF KNOWL | 10.1145/2339530.2339723 264
DISCOV DATA MIN [40]

by scholars. Table 1 presents the distribution of the paper
according to the total number of citations.

C. ANALYSIS OF KEYWORDS

As we know, keywords give an overview of the research
articles. Therefore analyzing the keyword distribution of the
Scopus database gives a brief representation of the research
domain. Figure 5 presents the keyword distribution. In the
Figure 5, keywords are arranged according to the occurrence
frequency; as the occurrence frequency of a keyword in-
creases, its size increases. Therefore, from Figure 5 it is clear
that frequently occurring keywords are as follows:

dimensionality reduction
visual analytics

primcipsl compement snalysis

fdata Ulsuallla“ﬂnuumm -
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““ng —
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FIGURE 5: Keywords Distribution

exploratory data analysis (531)
machine learning (129)

data mining (101)

clustering (84)
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— data visualization (67)

— visualization (60)

— visual analytics (49)

— data analysis (43)

— classification (42)

— dimensionality reduction (41)

D. ANALYSIS OF COUNTRY

The locations of researchers are likewise crucial to the ad-
vancement of scientific inquiry. This section thus provides
an evaluation of the impact of location on research in EDA.
Figure 6 presents the result of our analysis. We can compute
the ranking of the countries according to the number of pa-
pers their researchers published. From Figure 6; the ranking
of the countries are as follows.

Country Scientific Production

FIGURE 6: Country Production

USA (866)
INDIA (302)
GERMANY (247)
CHINA (234)

UK (163)
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SPAIN (120)
BRAZIL (114)
FRANCE (89)
ITALY (83)

CANADA (80)

V. CONCLUSION

Exploratory Data Analysis (EDA) is a method of data analy-
sis that depends on the use of graphical tools. It may be used
to find patterns and trends, as well as to check assumptions
and hypotheses, using statistical summaries and visual repre-
sentations. Not only can it help discover glaring mistakes,

but

it can also shed light on hidden meanings, flag out-

of-the-ordinary occurrences, unearth surprising connections
between variables, and more.
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