

1

 Mastering NGINX: A Comprehensive Guide to Web Server Excellence

Himanshu Tiwari1
1International Center for AI and Cyber Security Research and Innovations (CCRI), Asia

University, Taiwan,

 ABSTRACT NGINX is a robust and flexible online traffic management tool in the ever-changing

web server and application delivery ecosystem. Modern online infrastructure relies on its web server,

reverse proxy, load balancer, and other capabilities. This article discusses NGINX's capabilities, usage

cases, and why developers and IT professionals like it.

 KEYWORDS NGINX; Webserver; Open-Source; NGINX Modules; Apache

A. INTRODUCTION

Figure 1: NGINX Working

The ever-changing web server and application delivery

landscape has made NGINX a powerful and versatile

web traffic control tool. Web infrastructure relies on its

web server, reverse proxy, load balancer, and other

capabilities. This article will discuss NGINX's features,

usage cases, and appeal to developers and IT

professionals.

B. THE BIRTH OF NGINX

Web server software NGINX's birth is remarkable.

Russian software engineer Igor Sysoev designed

NGINX ("engine-x."). Later, it was a popular web

server program globally.

In the early 2000s, Igor Sysoev worked for Rambler, a

famous Russian web portal, and invented NGINX. To

handle increased traffic and demand, he improved web

infrastructure performance and scalability. Apache was

the most used web server, although it struggled with

static content and concurrent connections.

To tackle these issues, Igor constructed his web server.

He released NGINX in October 2004 after developing

it in 2002. NGINX handled concurrent connections

more efficiently than Apache's process-based paradigm

due to its asynchronous, event-driven architecture.

Igor said NGINX, a pun on "engine," is pronounced

"engine-x." Due to its excellent performance, low

resource usage, and capacity to provide static and

dynamic information, it became popular immediately.

Load balancing, reverse proxy, and protocol support

made NGINX adaptable for web hosting, proxying, and

more.

The open-source nature and growing user and

developer community enhanced NGINX's popularity.

NGINX, Inc. was formed in 2011 by Igor Sysoev and

Maxim Konovalov to provide commercial support and

services. This kept NGINX evolving with current web

architecture.

Web applications, websites, and services use NGINX.

High performance, scalability, and dependability make

it important to current online ecosystems. NGINX's

transformation from a problem-solving open-source

initiative to a web server standard is astonishing.

C. KEY FEATURES OF NGINX

Due to its speed, scalability, and versatility, NGINX,

an open-source web server and reverse proxy server,

has grown in popularity. Its key features make it

worthwhile for serving web content, load balancing,

and network tasks.

High Performance: NGINX's ability to handle many

simultaneous connections with low resource

consumption is a significant benefit. Event-driven,

non-blocking architecture makes it efficient and can

serve static content and proxy requests with low

 Himanshu Tiwari. / Next-Gen-Tech Insights Magazine, Vol.01

2

latency. This performance is beneficial when high web

traffic and low response times are crucial.

Reverse Proxy: NGINX is often used as a reverse proxy

server between clients and application servers. It can

load-balance requests to backend servers using round-

robin, IP hashing, or least connections. It is essential

for high availability, fault tolerance, and application

performance.

Load balancing: NGINX distributes network traffic

across multiple servers for even request distribution,

system utilization, and redundancy. It can check

backend servers' health and automatically remove

unhealthy ones from the load-balancing pool,

improving system reliability.

Figure 2: NGINX Webserver

SSL/TLS Termination: NGINX offloads backend

server SSL/TLS encryption and decryption for

incoming client requests. Reduces application server

computational load, improves security, and simplifies

certificate management.

Thanks to its caching capabilities, NGINX can

efficiently store and serve static and dynamic content.

It reduces backend server load and improves response

times, especially for frequently accessed resources.

Accelerating websites: NGINX accelerates web

applications by reducing network data and supporting

multiplexing, prioritization, and server push with Gzip

compression and HTTP/2.

Web Server and Reverse Proxy: NGINX can serve

HTML, CSS, JavaScript, and images as a web server.

For hosting websites and web applications, it can

handle URL redirections, access control, and other

HTTP tasks.

Modules and extensibility: NGINX supports many

third-party modules and extensions to customize its

behaviour. These modules give NGINX flexibility by

enabling authentication, rate limiting, and URL

rewriting.

D. POPULAR USE CASES

NGINX's performance, scalability, and flexibility

have made it popular in tech. This article will discuss

NGINX's most common uses and how it has become

essential to modern web infrastructure.

The NGINX web server serves static content such

as HTML files, CSS, JavaScript, and images. Event-

driven architecture allows it to handle many concurrent

connections, which is essential for high-traffic

websites. NGINX's fast response times and low

resource usage make it ideal for web hosting.

NGINX can distribute web requests to multiple

backend servers as a reverse proxy when used as a web

server, improving reliability and load distribution.

High-traffic websites and apps need this.

NGINX is a powerful reverse proxy intermedi

between client requests and backend servers. This use

case is valid for load balancing, security, and high

availability. NGINX distributes incoming traffic across

multiple backend servers to avoid overloading anyone.

This load balancing reduces server failure downtime

and system instability.

NGINX can hide backend server information from

external clients for added security, preventing internet

exposure. It can also implement access control, DDoS

protection, and SSL termination to boost system

security.

NGINX is commonly used as a load balancer to

distribute incoming traffic across multiple backend

servers. This helps companies horizontally scale their

applications for high availability and performance.

NGINX supports round-robin, least connections, IP

hash, and other load-balancing algorithms.

Administrators can pick their ideal algorithm.

NGINX distributes traffic among backend servers

and checks for health issues to exclude malfunctioning

servers from the pool, ensuring that only healthy

servers handle requests. This proactive server

management improves system reliability.

Himanshu Tiwari et al. / Next-Gen-TechInsights Magazine, Vol.01

 3

NGINX provides caching to store and serve

frequently accessed content efficiently. It caches static

and dynamic content, relieving backend servers and

speeding client responses. Administrators can set cache

expiration times and purging in NGINX's cache control

mechanisms to give users the latest content when

needed.

Figure 3: NGINX as Reverse Proxy and Firewall

NGINX reduces server load and bandwidth

consumption by caching content, making it useful for

content-heavy websites, e-commerce platforms, and

other data-intensive applications.

NGINX is often used as an API gateway, providing

a single entry point for client applications to access

backend services and APIs. Gateways simplify API

management, authentication, and traffic control.

NGINX's rate limiting, authentication, and security

policies protect APIs from abuse.

An API gateway like NGINX is essential for

microservices architectures, where many small

services interact. It simplifies the API layer, making it

easier to manage and secure microservice interactions.

NGINX is a crucial part of implementing content

delivery networks (CDNs). CDNs distribute web

content to strategically placed edge servers to optimize

delivery. NGINX's reverse proxy handles requests and

caches content at edge locations, reducing latency and

improving user experience.

Global audiences benefit from NGINX-powered

CDNs that efficiently serve large-scale media and

dynamic web content. Caching and serving content

from geographically distributed edge servers speeds up

content delivery and reduces the origin server load.

As a Web Application Firewall (WAF), NGINX can

safeguard web applications from cyberattacks like SQL

injection, cross-site scripting (XSS), and other

vulnerabilities. NGINX filters HTTP requests to

prevent malicious traffic from reaching the application

server.

NGINX's WAF supports customizable rule sets, real-

time monitoring, and emerging threat mitigation.

Organizations can improve web application security

and protect sensitive data.

D. NGINX AND APACHE

There needs to be an adequate summary of references

to describe the current state-of-the-art or a summary of

the results.

Nginx and Apache are prominent open-source web

servers for websites and web apps. Their pros and cons

depend on your use case and needs.

Nginx: Nginx scales and performs well. It was

developed to handle several simultaneous connections

efficiently. Event-driven and asynchronous, Nginx

does not create a new process or thread for each new

connection, making it more resource-efficient for many

clients.

Nginx's reverse proxy, load balancer, and caching

server capabilities are notable. It is ideal for dispersing

incoming traffic to numerous backend servers to boost

web application performance and dependability. Its

efficient SSL/TLS termination makes it popular for

secure connections.

Using declarative syntax, Nginx's configuration is

simple. Simplifying configuration reduces errors.

Nginx serves static material rapidly and effectively due

to its non-blocking I/O capabilities.

Apache: One of the oldest web servers is Apache or

Apache HTTP Server. The classic process-based

architecture starts a new process or thread for each

incoming connection. This technique uses resources

less efficiently than Nginx's event-driven architecture,

but it can manage many connections with the correct

configuration.

Apache's broad and customizable .htaccess file

setting allows fine-grained control over web server

behaviour. Apache's large module ecosystem makes it

flexible and adaptive to varied use cases. It is well-

documented, so web hosting businesses and

organizations like it.

Which one is better?

Your needs and tastes determine whether to use

Nginx or Apache. Both servers offer advantages, but

there is no correct answer:

 Himanshu Tiwari. / Next-Gen-Tech Insights Magazine, Vol.01

4

If: Nginx is better.

1. You must efficiently manage several

simultaneous connections.

2. Use it as a reverse proxy or load balancer.

3. You are serving lots of static content, which

Nginx does well.

4. Effectively terminate SSL/TLS connections.

5. Simple, declarative configuration is preferred.

Apache is recommended if:

1. Your environment already uses Apache's

functionality and modules.

2. You need extensive .htaccess tweaking.

3. You and your team know Apache better.

4. You need an advanced web server with several

modules.

Combining Nginx with Apache is often possible. A

reverse proxy like Nginx handles incoming requests,

distributes traffic, and serves static material effectively.

At the same time, Apache processes dynamic content

and employs its vast module ecosystem for URL

rewriting, authentication, and custom scripting.

NGINX MODULES

Add functionality and features to Nginx with modules.

Explaining common Nginx modules:

A crucial feature of Nginx, the HTTP core module

provides basic HTTP server functionality. It processes

HTTP requests and gives server responses. Headers,

HTTP methods, and static file serving are handled by

this module.

Ensuring safe communication over HTTPS requires

the HTTP SSL module. Configuring SSL/TLS

encryption and controlling certificates ensures secure

and secret server-client data.

Utilise the HTTP Rewrite module to dynamically

modify and manipulate URLs. This is used for URL

redirection, path rewriting, and query parameter

changes. Create user- and search engine-friendly URLs

with this module.

Set up Nginx as a reverse proxy server using the

HTTP Proxy module. Nginx can distribute HTTP

requests to other web servers and apps, making it a load

balancer and content cache. Distributing traffic

efficiently and boosting web application performance

require this module.

HTTP FastCGI Module: Interfaces with FastCGI-

based applications. IT allows Nginx to interface with

PHP-FPM or Ruby on Rails, improving its dynamic

content handling. Dynamic web pages require this

module.

When using the HTTP Gzip module, Nginx can

compress responses before sending them to clients.

HTML, CSS, and JavaScript content use less

bandwidth and load faster.

Modify HTTP response headers with the HTTP

Headers module. Custom headers, caching, and

modification are possible. Increase website

performance and security using this addon.

HTTP Secure Link Module: Implements secure

download links. It allows time-limited or token-based

file URLs, making it useful for authenticating

downloading content.

The HTTP Real IP module resolves client IP

addresses when Nginx is used as a reverse proxy for

other servers or load balancers. To log and control

access, it uses the original client IP.

The HTTP Subrequest module allows Nginx to

communicate with other server resources internally.

This helps modularize configurations and process

complex requests.

This module allows you to cache specified content,

such as static files or dynamic information. Caching

optimises server load and response times for frequently

visited resources.

 CONCLUSION

Nginx has evolved into a powerful and adaptable

solution for managing web traffic in the ever-changing

ecosystem of web servers and application delivery.

This article goes into Nginx's capabilities, usage cases,

and the reasons why developers and IT professionals

gravitate towards it. We trace the journey of Nginx

from its birth to become a crucial component of current

online infrastructure. Nginx's essential characteristics,

including fast performance, reverse proxy capabilities,

load balancing, SSL/TLS termination, and caching, are

explored in length. The article also outlines prominent

use cases, such as serving static content, acting as a

reverse proxy, load balancer, and web application

firewall, and its role in content delivery networks and

microservices architectures. Furthermore, we compare

Himanshu Tiwari et al. / Next-Gen-TechInsights Magazine, Vol.01

 5

Nginx with Apache, emphasizing their unique

capabilities and applicability for diverse

circumstances. Ultimately, the choice between Nginx

and Apache depends on specific needs and tastes, and

in some circumstances, a mix of both might offer an

optimal solution for web server and application

delivery

References:

[1] Soni R. Nginx. Berkeley: Apress; 2016.

[2] DeJonghe D. Nginx CookBook. O'Reilly Media;

2020 Oct 28.

[3] Reese W. Nginx: the high-performance web server

and reverse proxy. Linux Journal. 2008 Sep

1;2008(173):2.

[4] Nedelcu C. Nginx http server. Packt Publishing

Ltd.; 2010.

[5] Data M, Luthfi M, Yahya W. Optimizing single

low-end LAMP server using NGINX reverse proxy

caching. In2017 International Conference on

Sustainable Information Engineering and Technology

(SIET) 2017 Nov 24 (pp. 21-23). IEEE.

[6] Kithulwatta WM, Jayasena KP, Kumara BT,

Rathnayaka RM. Performance evaluation of docker-

based apache and nginx web server. In2022 3rd

International Conference for Emerging Technology

(INCET) 2022 May 27 (pp. 1-6). IEEE.

[7] La Lau R, La Lau R. Web Server Part 1:

Apache/Nginx Basics. Practical Internet Server

Configuration: Learn to Build a Fully Functional and

Well-Secured Enterprise Class Internet Server.

2021:183-225.

[8] Kithulwatta WM, Jayasena KP, Kumara BT,

Rathnayaka RM. Performance evaluation of docker-

based apache and nginx web server. In2022 3rd

International Conference for Emerging Technology

(INCET) 2022 May 27 (pp. 1-6). IEEE.

[9] Putro ZP, Supono RP. Comparison Analysis of

Apache and Nginx Webserver Load Balancing on

Proxmox VE in Supporting Server Performance.

International Research Journal of Advanced

Engineering and Science. 2022;7(3):144-51.

[10] Alsmirat, M. A., Jararweh, Y., Al-Ayyoub,

M., Shehab, M. A., & Gupta, B. B. (2017).

Accelerating compute intensive medical imaging

segmentation algorithms using hybrid CPU-GPU

implementations. Multimedia Tools and

Applications, 76, 3537-3555.

[11] Tripathi, S., Gupta, B., Almomani, A.,

Mishra, A., & Veluru, S. (2013). Hadoop based

defense solution to handle distributed denial of

service (ddos) attacks.
[12] Almomani, A., Gupta, B. B., Wan, T. C., Altaher,

A., & Manickam, S. (2013). Phishing dynamic

evolving neural fuzzy framework for online detection

zero-day phishing email. arXiv preprint

arXiv:1302.0629. https://arxiv.org/abs/1302.0629

[13] Gupta, B. B., Joshi, R. C., & Misra, M. (2012).

ANN based scheme to predict number of zombies in a

DDoS attack. Int. J. Netw. Secur., 14(2), 61-70.

https://arxiv.org/abs/1302.0629

