B-Trees and B+ Trees: Managing Large
Datasets with Balanced Tree Structures

AYUSHI'

! CSE Department, Chandigarh College of Engineering and Technology, Chandigarh, India.

ABSTRACT Efficient storage and retrieval of large datasets is crucial to managing these large chunks of data so that
no data is lost. B trees and B+ trees are employed in managing these large datasets. The article introduces the concept of
B trees and B+ trees data structures highlighting their characteristics, importance, and differences. The article focuses
on how these balanced tree structures (B Trees and B+ Trees) are employed to manage these large datasets. To manage
the large chunks of data various indexing mechanisms are used. The article details how these mechanisms are used to
manage large datasets using B Trees and B+ Trees. The article also highlights the challenges faced while using these

structures.

KEYWORDS Data Structures, B Trees, B+ Trees, Datasets,

. INTRODUCTION

The world’s technology is constantly changing and evolv-
ing. Due to all these advancements a large amount of data
is generated. In the year 2008, a consulting company [1]
suffered a significant setback as they lost a highly profitable
contract with the prison system in the United Kingdom. This
unfortunate incident occurred when one of their employees
either misplaced or lost a USB drive that contained cru-
cial personal information and release dates of over 80,000
inmates. It is crucial to store this large amount of data to
prevent any loss. Large datasets should be managed and
computer science plays a vital role in that. In the rapidly
evolving landscape of technology, computer science serves as
the foundation for innovation and drives the development of
cutting-edge solutions that shape our digital world. It is a very
important field since it not only explores theoretical concepts
but also has many practical applications. Various disciplines
of computer science are used in real life scenarios to perform
a large number of tasks. Data structures is one such area
in the field of computer science. The importance of data
structures in computer science is paramount. They have many
advantages such as efficient data retrieval and manipulation,
algorithm efficiency, memory utilization, optimized search
and retrieval, real world problem solving and scalability to
name a few. They are also widely used in database systems.

Data structures provide efficient methods for storing and
retrieving data, making it possible to perform operations such
as searching, insertion, deletion, and modification quickly
and with minimal resource usage. Efficient data structures
contribute to optimal memory usage. They help in minimiz-
ing memory overhead [2] and ensuring that the available
resources are used effectively, which is critical for systems

with limited memory. As datasets grow in size, the effi-
ciency of data structures becomes even more critical. Well-
designed data structures scale gracefully, ensuring that the
performance of algorithms [3] does not degrade significantly
as the volume of data increases. In database systems, the
choice of data structures directly impacts query performance
[4]. Indexing structures like B-trees and hash indexes are
used to speed up data retrieval operations.

Il. B TREES

B-trees, also known as balanced trees, are a type of self-
balancing search tree data structure that maintains sorted
data and allows searches, insertions, deletions, and other
operations in logarithmic time. They are particularly useful in
scenarios where data is stored on disk or in situations where
efficient search operations are crucial. B-trees are designed
to be balanced, meaning that the depth of the tree is kept
relatively constant. Efficient search, insertion, and deletion
operations are guaranteed by this equilibrium. A B-tree of
order t is a tree in which each internal node can have at most
2t1 keys and at least t1 keys. The internal nodes in a B-tree
have one more child than the number of keys they contain.
The root of the B-tree must have at least one key, unless it
is a leaf node, and it can have a maximum of 2t1 keys. All
the leaf nodes in a B-tree are located at the same level and
hold between t1 and 2t1 keys. The Figure below represents a
B tree with a maximum degree of three generated according
to a given dataset.

lll. B+ TREE

B+ trees exhibit similarities to B-trees, yet they are a distinct
self-balancing tree data structure, showcasing several notable

VOLUME 3, 2023

Ayushi/ Data Science Insights Magazine, Vol 03, 2023

FIGURE 1: B tree

FIGURE 2: B+ tree

distinctions. B+ trees are particularly well-suited for use in
database systems and file systems. Like B-trees, B+ trees are
balanced trees. In a B+ tree, the leaf nodes exclusively hold
all the keys, while the internal nodes solely consist of pointers
to other nodes without storing any actual data. The linked
list in a B+ tree connects all the leaf nodes, enhancing the
efficiency of range queries and sequential access. By utilizing
this linked list, it becomes possible to execute range queries
without the need to traverse the entire tree. On the other
hand, the internal nodes of a B+ tree solely consist of keys
for navigation and pointers to child nodes. These keys play a
crucial role in guiding the search process.

The figure below represents a B+ tree of maximum degree
three generated according to a given dataset.

IV. KEY DIFFERENCES BETWEEN B AND B+ TREES
The table below represents the key differences between B and
B+ trees.

V. NEED FOR MANAGING LARGE DATASETS USING
DATA STRUCTURES

Effectively managing large datasets is imperative for various
reasons. First and foremost, employing well-designed data
structures is essential for ensuring efficient retrieval of in-
formation from extensive datasets. The choice of appropriate
structures can significantly impact the time complexity of
search, insertion, and deletion operations, crucial for data
management. Moreover, these structures contribute to space
efficiency, optimizing memory usage and accommodating
large volumes of data within limited resources. Storing large
amounts of data is also crucial in ensuring privacy[5]. Large
datasets[6] often require complex queries, filtering, and sort-
ing operations, making it crucial to use data structures that
can handle such tasks with optimal performance. Addition-

VOLUME 3, 2023

TABLE 1: Key differences between B Trees and B+ Trees

Feature B trees B+ trees
Structure Keys can be present in | Keys are present only in
internal and leaf nodes the leaf nodes
Data Data associated with | Data stored only in the
Storage keys can be stored in any | leaf nodes. Forming a se-
node quential list
Internal Internal nodes store keys | Internal nodes store keys
Node keys guiding navigation for navigation, no associ-
ated data
Leaf Node | Leaf nodes may or may | Leaf nodes are always
Structure not be linked together linked in a linked list
Range Typically less efficient | Highly efficient for range
Queries for range queries queries due to linked list
structure
Sequential Not as efficient due to | Efficient sequential ac-
Access scattered data storage cess due to linked list
structure
Performance | May require more I/O | Improved performance
operations for range | for range queries and
queries sequential access
Insertion Can involve modifying | Simplified as data is in-
and internal nodes and redis- | serted or deleted only in
Deletion tributing keys leaf nodes

ally, the concurrency and scalability of systems handling
large datasets are greatly influenced by the underlying data
structures and algorithms[7]. Maintaining data integrity is
another key aspect, and the right data structures can prevent
duplicate entries and enforce constraints. Reducing the num-
ber of I/O operations is essential for performance, especially
when dealing with data stored on external devices. Time
complexity considerations play a pivotal role, and the choice
of data structures directly impacts the overall efficiency of
operations. Large datasets are generated in mostly every field
of computer science like robotics[8] .In specific domains
like database systems, query optimization is facilitated by
selecting data structures, such as indexes, hash tables, or tree
structures. Lastly, in analytics and machine learning applica-
tions, data structures supporting efficient manipulation and
analysis are essential for extracting meaningful insights from
large datasets. In essence, the effective management of large
datasets relies on the judicious selection and implementation
of appropriate data structures tailored to the characteristics
and requirements of the dataset and operations involved.

VI. ROLE OF B AND B+ TREES

B-trees are tree structures that are self-balanced and play a
crucial role in computer science, particularly in the organiza-
tion and management of large datasets. Named for their "bal-
anced" nature, B-trees efficiently handle dynamic datasets,
making them ideal for applications like databases and file
systems. These trees maintain sorted data, allowing for rapid
search, insertion, and deletion operations. Each node in a
B-tree can contain more than one key and corresponding
child pointers, promoting effective utilization of storage[9].
One distinguishing feature is their ability to automatically
balance themselves after every insertion or deletion, ensur-
ing consistent performance over time. B-trees find extensive
use in scenarios where the efficient management of large

9

Ayushi/ Data Science Insights Magazine, Vol 03, 2023

Efficient
Search

Balanced Algorithms

structure Optimized
for disk 1/O
scalability

Range
Queries and
Sequential

Access

B Trees:

On large datasets

Insertions
and
deletions

Database
Indexing

Memory
utilization

FIGURE 3: Features of B Trees in terms of large datasets

and evolving datasets is essential. Their balanced structure
and optimized search operations make them a fundamental
component in the design of robust and scalable systems. The
figure below is a representation of the various features of B
trees in the context of large datasets.

B+ trees stand out as a robust solution for efficiently
managing large datasets[10], particularly in the domains of
databases and file systems. Their balanced structure ensures
swift search and retrieval operations, making them well-
suited for scenarios involving extensive datasets. The linked
list arrangement of leaf nodes enhances their capability
for sequential access, proving advantageous in applications
where range queries are frequent. B+ trees exhibit optimized
disk I/O, reducing the number of reads and writes neces-
sary to perform operations on the dataset. Their balanced
nature also contributes to scalability, maintaining consis-
tent performance as datasets grow or shrink. Moreover, B+
trees efficiently handle insertions and deletions, adapting
dynamically to changes in the dataset size. With a focus
on memory utilization, they store keys in internal nodes
and data records in leaf nodes, maximizing the efficient use
of available memory. In the realm of database indexing,
B+ trees excel, providing effective support for quick data
retrieval based on keys. Similarly, in file systems, B+ trees
are employed to organize and manage extensive file-related
metadata, leveraging their balanced structure and efficient
search capabilities. In essence, B+ trees emerge as a pivotal
tool, offering a well-rounded solution for the intricate task
of handling large and dynamic datasets in diverse computing
[11] applications. The figure below is a representation of the
various features of B+ trees in the context of large datasets.

VIl. HOW THEY ARE APPLIED TO LARGE DATASETS

Various indexing mechanisms are applied to B+ trees to
manage large datasets as stated in [12].

10

Sequential
access and
Range
Queries
Optimized

Disk I/O

B+ Trees:

On large datasets

FIGURE 4: Features of B+ Trees in terms of large datasets

1y

2)

3)

Operations of inserting: When a new element is added
to the tree, the process starts at the root by com-
paring the key with the existing ones in the node.
This comparison is done recursively until a leaf is
reached. If the leaf has enough space, the new key is
inserted. However, if there is no space, a split operation
occurs. Throughout the splitting process, a fresh leaf
emerges, acquiring half of the keys from the previous
leaf, while the smallest key is transferred to the par-
ent node. This sequence persists until a parent node
reaches a point where splitting is no longer necessary.
If the root requires further splitting, a new root is
created. The time complexity for inserting a key is
O(logN), where N represents the number of keys and e
is the base of the logarithm that indicates the capacity
of the node.

Searching with respect to a given range: In modified
B+ trees, the leaves are interconnected in a linked
list fashion to facilitate searches within a specified
range. The search process commences by identifying
the smallest key within the range and locating the
corresponding leaf. Once the keys are arranged in
ascending order, the first key greater than the left range
is determined, and a sequential comparison is carried
out with the right range. The presence of linked leaves
eliminates the necessity for backtracking as pointers
allow direct access to the subsequent leaf. The com-
plexity of range searches is represented as O(logN +
m), where logN signifies the position of the key that is
on the extreme left, and m indicates the number of keys
that are retrieved.

Implementation of B+ tree by distributing: The dis-
tributed implementation of the B+ Tree index utilizes
an HBase table to store the index. In this table, each
row corresponds to a node in the tree. The node in-
formation, such as the keys representing the range for

VOLUME 3, 2023

Ayushi/ Data Science Insights Magazine, Vol 03, 2023

subsequent nodes and the data values for leaves, is
stored as columns. To create the index, a MapReduce
task is executed. In this task, the data from the dataset is
processed in the Mapper and converted into a suitable
key-value format. To evenly distribute the data among
reducers, a custom partitioner is employed. This parti-
tioner creates intervals based on the key range of the
dataset.

4) The B+ Tree index is implemented in a distributed
manner using an HBase table to store the index. Each
row in this table corresponds to a node in the tree.
The node information, including the keys that represent
the range for subsequent nodes and the data values
for leaves, is stored as columns. To create the index,
a MapReduce task is executed. During this task, the
data from the dataset is processed in the Mapper and
transformed into a suitable key-value format. To ensure
an even distribution of data among reducers, a custom
partitioner is utilized. This partitioner creates intervals
based on the key range of the dataset.

VIll. CHALLENGES FACED WHILE DEALING WITH
LARGE DATASETS

Dealing with large datasets in B-trees and B+ trees introduce
several challenges. As the dataset size increases, these tree
structures may demand more memory, resulting in higher
storage costs and potential performance drawbacks. Search-
ing becomes less efficient due to increased tree depth, lead-
ing to longer search paths and slower retrieval times. The
overhead associated with insertion and deletion operations
grows, complicating the task of balancing the tree. Disk I/O
operations may become frequent if the entire dataset cannot
fit in memory, causing performance bottlenecks. Addition-
ally, cache inefficiency can impede the benefits of caching
mechanisms, resulting in more cache misses. In B-trees,
splitting nodes during insertion or merging them during
deletion becomes more common and resource-intensive with
larger datasets. Lastly, while B+ trees are optimized for range
queries, sequentially accessing elements in a large dataset
may still involve traversing a significant portion of the tree,
leading to potential performance issues. Addressing these
shortcomings may require optimization of tree structures,
implementation of effective caching strategies, and consid-
eration of alternative data structures or indexing techniques.

MapReduce is an example of one such research done
on B tree and B+ trees so that they can manage large
datasets. Many deep learning models [13] and computational
intelligence [14] models [15] are currently in application. A
new method that overcomes the shortcomings of the already
proposed models is important.

IX. CONCLUSION

In conclusion, B-trees and B+ trees emerge as pivotal tools
in the realm of managing large datasets with their balanced
tree structures. As introduced, B-trees and B+ trees exhibit

VOLUME 3, 2023

CHALLENGES

SEARCH
Bl PERFORMANCE

FACEDIN
MANAGING LARGE
DATASETS BY B
TREES AND B+
TREES

INSERTION AND
DELETION
OVERHEAD

FIGURE 5: Challenges faced in managing large datasets by
B Trees and B+ Trees

key distinctions, with B+ trees proving particularly adept
in scenarios where range queries and sequential access are
paramount. These structures play a critical role in efficiently
organizing and accessing vast amounts of data, ensuring op-
timal search, insertion, and deletion operations. Despite their
skills, challenges loom large, encompassing issues of space
efficiency, concurrency, and the need for streamlined query
optimization. The complexities inherent in handling large
datasets necessitate a sophisticated approach, prompting the
exploration of a new framework. Addressing these challenges
demands a comprehensive solution that not only mitigates
the limitations of existing structures but also introduces
innovations to meet the evolving demands of modern data
management. As the landscape of large datasets continues to
expand, the call for a new framework becomes imperative,
ushering in an era where data structures are not just tools but
dynamic solutions adaptable to the complexities of today’s
data-intensive environments.

REFERENCES

[1] Moore, R. (2022, June 7). 4 real-life examples of data loss. Stronghold
Data. https://strongholddata.com/4-real-life-examples-of-data-loss/

[2] Kumar, S., Singh, S. K., Aggarwal, N., Gupta, B. B., Alhalabi, W., &
Band, S. S. (2022). An efficient hardware supported and paralleliza-
tion architecture for Intelligent Systems to overcome speculative over-
heads. International Journal of Intelligent Systems, 37(12), 11764-11790.
https://doi.org/10.1002/int.23062

[3] Singh, I, Singh, S. K., Singh, R., & Kumar, S. (2022). Efficient loop
unrolling factor prediction algorithm using machine learning models.
2022 3rd International Conference for Emerging Technology (INCET).
https://doi.org/10.1109/incet54531.2022.9825092

[4] Rastogi, A., Sharma, A., Singh, S., & Kumar, S. (2017). Capacity and In-
clination of High Performance Computing in Next Generation Computing.
Proceedings of the 11th INDIACom. IEEE.

[5] Sharma, A., Singh, S. K., Chhabra, A., Kumar, S., Arya, V., & Mosleh-
pour, M. (2023). A novel deep federated learning-based model to en-

11

hance privacy in Critical Infrastructure Systems. International Jour-
nal of Software Science and Computational Intelligence, 15(1), 1-23.
https://doi.org/10.4018/ijssci.334711

[6] Sharma, A., Singh, S. K., Badwal, E., Kumar, S., Gupta, B. B,
Arya, V., Chui, K. T., & Santaniello, D. (2023). Fuzzy based
clustering of consumers’ big data in Industrial Applications. 2023
IEEE International Conference on Consumer Electronics (ICCE).
https://doi.org/10.1109/icce56470.2023.10043451

[71 Kumar, S., Singh, S. Kr., Aggarwal, N., & Aggarwal, K. (2021).
Evaluation of automatic parallelization algorithms to minimize
speculative parallelism overheads: An experiment. Journal of
Discrete Mathematical Sciences and Cryptography, 24(5), 1517-1528.
https://doi.org/10.1080/09720529.2021.1951435

[8] Aggarwal, K., Singh, S. K., Chopra, M., Kumar, S., & Colace, F. (2022).
Deep learning in robotics for strengthening industry 4.0.: Opportunities,
challenges and future directions. Robotics and Al for Cybersecurity and
Critical Infrastructure in Smart Cities, 1-19. https://doi.org/10.1007/978-
3-030-96737-6_1

[9] Achakeev, D., & Seeger, B. (2013). Efficient bulk updates on multiver-
sion B-trees. Proceedings of the VLDB Endowment, 6(14), 1834—1845.
https://doi.org/10.14778/2556549.2556566

[10] Ngu, H. C., & Huh, J.-H. (2017). B+-tree construction on mas-
sive data with Hadoop. Cluster Computing, 22(S1), 1011-1021.
https://doi.org/10.1007/s10586-017-1183-y

[11] Singh, R., Singh, S. Kr., Kumar, S., & Gill, S. S. (2022). SDN-aided
edge computing-enabled AI for IOT and smart cities. SDN-Supported
Edge-Cloud Interplay for Next Generation Internet of Things, 41-70.
https://doi.org/10.1201/9781003213871-3

[12] Samoladas, D., Karras, C., Karras, A., Theodorakopoulos, L., &
Sioutas, S. (2022). Tree data structures and efficient indexing tech-
niques for BIG DATA MANAGEMENT: A comprehensive study.
Proceedings of the 26th Pan-Hellenic Conference on Informatics.
https://doi.org/10.1145/3575879.3575977

[13] Mengi, G., Singh, S. K., Kumar, S., Mahto, D., & Sharma, A.
(2023). Automated Machine Learning (automl): The future of compu-
tational intelligence. Lecture Notes in Networks and Systems, 309-317.
https://doi.org/10.1007/978-3-031-22018-0_28

[14] Kumar, S., Singh, S. K., Aggarwal, N., Gupta, B. B., Alhalabi, W., &
Band, S. S. (2022a). An efficient hardware supported and paralleliza-
tion architecture for Intelligent Systems to overcome speculative over-
heads. International Journal of Intelligent Systems, 37(12), 11764-11790.
https://doi.org/10.1002/int.23062

[15] Kumar, S., Singh, S. K., Aggarwal, N., Gupta, B. B., Alhalabi, W., &
Band, S. S. (2022a). An efficient hardware supported and paralleliza-
tion architecture for Intelligent Systems to overcome speculative over-
heads. International Journal of Intelligent Systems, 37(12), 11764-11790.
https://doi.org/10.1002/int.23062

[16] Almomani, A., Alauthman, M., Shatnawi, M. T., Alweshah, M., Alrosan,
A., Alomoush, W., & Gupta, B. B. (2022). Phishing website detection with
semantic features based on machine learning classifiers: a comparative
study. International Journal on Semantic Web and Information Systems
(IISWIS), 18(1), 1-24.

[17] Wang, L., Li, L., Li, J., Li, J., Gupta, B. B., & Liu, X. (2018). Compressive
sensing of medical images with confidentially homomorphic aggregations.
IEEE Internet of Things Journal, 6(2), 1402-1409.

[18] Stergiou, C. L., Psannis, K. E., & Gupta, B. B. (2021). InFeMo: flexible big
data management through a federated cloud system. ACM Transactions on
Internet Technology (TOIT), 22(2), 1-22.

[19] Gupta, B. B., Perez, G. M., Agrawal, D. P., & Gupta, D. (2020). Handbook
of computer networks and cyber security. Springer, 10, 978-3.

[20] Bhushan, K., & Gupta, B. B. (2017). Security challenges in cloud com-
puting: state-of-art. International Journal of Big Data Intelligence, 4(2),
81-107.

Ayushi/ Data Science Insights Magazine, Vol 03, 2023

12 VOLUME 3, 2023

